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The HP filter is the most popular filter for extracting the trend and cycle components from an 
observed time series. Many researchers consider the smoothing parameter λ = 1600 as 
something like an universal constant. It is well known that the HP filter is an optimal filter 
under some restrictive assumptions, especially that the “cycle” is white noise. In this paper we 
show that one gets a good approximation of the optimal Wiener-Kolmogorov filter for 
autocorrelated cycle components by using the HP filter with a much higher smoothing 
parameter than commonly used. In addition, a new method - based on the properties of the 
differences of the estimated trend - is proposed for the selection of the smoothing parameter. 
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1 Introduction

The probably most popular �lter for extracting a trend and a cycle component from an observed

time series is the Hodrick-Prescott �lter (Hodrick/Prescott 1997). The features of this �lter were

intensively studied in the literature (see, among many others, King/Rebelo 1993; Harvey/Jaeger

1993; Cogley/Nason 1994; Kaiser/Maravall 2001). The properties of the HP �lter in the time and

frequency domain depend mainly on a smoothing parameter λ which governs the smoothness of

the estimated trend and the shape of the estimated cycle. In most empirical applications a value

of 1600 is used for λ (quarterly data). Hodrick/Prescott motivate this value by the assumption

that the ratio of the variance of the cyclical component to the variance of the second di�erences

of the trend (the inverse signal-to-noise ratio) of US GDP is about 1600.

It is well known that the HP �lter with a smoothing parameter λ is optimal (in the sense that the

mean square error of the estimated components is minimal) if the second di�erences of the trend

follow a white noise process (the trend is integrated of order 2) and if the cyclical components

is white noise as well. These assumptions are clearly not appropriate in many applications. For

instance, when we specify the trend as a random walk (with constant drift), the second di�erences

follow an MA(1), not a white noise process. Most economists would argue that also the cycle is

not white noise but follows an autocorrelated stationary process. In all these cases, the suggestion

of Hodrick/Prescott has no sound justi�cation and the HP �lter is a pure ad-hoc procedure with

possibly dubious features.

An alternative to ad-hoc �lters like the HP �lter is the speci�cation and estimation of unob-

served components models (Harvey 1989). The Kalman �lter and smoother deliver in this case the

optimal �lter weights which are identical to those of the classical Wiener-Kolmogorov approach

(Gomez 1999). A second possibility is to estimate an ARIMA model and apply the Beveridge-

Nelson decomposition (Beveridge/Nelson 1981) or the �canonical� decomposition (Box et al. 1978).

The disadvantage of those procedures - at least from the standpoint of an applied economist who

has to analyze many time series for a real time business cycle analysis - is that they are complex

and time consuming. There is a demand for simple and easy-to-use �lters.

In this paper we stick to the HP �lter. The procedure is simple to understand, it is easy to

write a computer program and e�cient procedures are very fast (on a modern PC you can �lter

several thousands of time series with 200 observations in less than a second). The aim of the

paper is to suggest some simple rules for choosing a reasonable value for the smoothing parame-

ter λ. Firstly, assuming a doubly in�nite time series we derive for di�erent speci�cations of the

trend and the cycle components the optimal Wiener-Kolmogorov �lter and search for that λ for

which the gain of the Wiener-Kolmogorov �lter and the gain of the HP �lter have both a value
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of 0.5. This is an approximation to the goal of minimizing the di�erence between the two gain

functions (Harvey/Trimbur 2008). The results imply that in most realistic settings we should use

much higher values for the smoothing parameter than the true inverse signal-to-noise ratio. For

instance, assuming for the cycle an AR(1) model with a parameter of 0.7, the optimal λ is about

�ve times higher than the inverse signal-to-noise ratio: So, we should not use λ = 1600 but rather

a value of somewhat higher than 8000! These theoretical results are corroborrated by a simulation

study for time series with 160 observations. It is shown that by choosing a high λ one can achieve

a remarkable e�ciency gain (compared with the Wiener-Kolmogorov �lter).

The obtained results are useful but not really applicable in practice as we don't know the true

signal-to-noise ratio. In the second part of the paper we derive a simple rule for the determina-

tion of a reasonable value for λ. The basic idea is that the �rst and/or second di�erences of the

extracted trend should not exhibit a cyclical behaviour. We propose to use the HP �lter with

di�erent values of λ and select the minimum value for which the �rst and second di�erences of the

generated trend show no cyclical behaviour. This choice can be based on visual inspection or on

a more formal analysis in the time or frequency domain.

The paper is organized as follows: Section 2 outlines the model, the optimal Wiener-Kolmogorov

�lter and the Hodrick-Prescott �lter. In section 3 we derive the optimal smoothing parameter for

autocorrelated cycles. In section 4 we discuss a new suggestion for selecting λ. Section 5 reports

the results for an empirical application and section 6 concludes.

2 Theoretical framework

2.1 The model

We specify a time series {yt} as the sum of a non-stationary trend component {µt} and a stationary
cycle {ct}:

yt = µt + ct (1)

The trend component is modeled as a n-fold integrated variable

(1− L)nµt = ηt (2)

where n is a positive integer and ηt is white noise with Eηt = 0 and V ar ηt = σ2
η.

The cycle is speci�ed as a stationary AR(2) process (with AR(1) as a special case)

ct = ϕ1ct−1 + ϕ2ct−2 + εt (3)
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or

Φ(L) ct = εt (3a)

where Φ(L) = 1 − ϕ1L − ϕ2L
2 and εt is white noise with E εt = 0 and V ar εt = σ2

ε . It is further

assumed that ηt and εt are uncorrelated at all leads and lags.

In the following we derive some properties of the components and the time series in the fre-

quency domain. The speci�cation of the trend and cycle components implies the folowing model

for the observed time series

yt = (1− L)−nηt + Φ(L)−1εt

The stationary form is given by

(1− L)nyt = ηt +
(1− L)n

Φ(L)
εt

The spectral density of the cycle is given by (Sargent, 1987, p. 262):

gc(ω) =
[
1 + ϕ2

1 + ϕ2
2 − 2ϕ1(1− ϕ2) cosω − 2ϕ2 cos 2ω

]−1
σ2
ε/2π

=
[
1 + ϕ2

1 + ϕ2
2 − 2ϕ1(1− ϕ2) cosω − 2ϕ2 cos 2ω

]−1 (1 + ϕ2)[(1− ϕ2)2 − ϕ2
1]

1− ϕ2

σ2
c

2π
(4)

where σ2
c is the variance of {ct}. ω is the angular frequency, measured in radians.

The pseudo spectrum of yt is given by

gy(ω) = [2(1− cosω)]−n σ2
η/2π + gc(ω)

= (σ2
η/2π){[2(1− cosω)]−n + λ∗g̃c(ω)} (5)

where λ∗ = σ2
c/σ

2
η is the true inverse signal-to-noise ratio and g̃c(ω) is de�ned as g̃c(ω) = 2πgc(ω)/σ2

c .

The pseudo-spectrum gy(ω) is in�nite at ω = 0 and can be derived along the arguments presented

in Harvey (1989, chapter 2.4) or Kaiser/Maravall (2001, chapt. 2.5). The key element concerning

the trend part is that {ηt} has a �at spectrum with value σ2
η/2π and the �lter (1 − L)−n has the

power transfer function [(1− e−ωi)(1− eωi)]−n = [2(1− cosω)]−n, where i =
√
−1 is the imaginary

unit.

With the same technique the (pseudo-) spectrum of (1 − L)dyt (where d is a positive integer)
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can be derived as

g∆dy(ω) =
σ2
η

2π

{
[2(1− cosω)]d−n + λ∗[2(1− cosω)]dg̃c(ω)

}
(6)

2.2 The optimal �lter

We use as the optimal �lter the Wiener-Kolmogorov �lter. It minimizes the mean square error of

the estimated component

MSEµ̂ = E(µ̂− µ)2

It is easy to show that the optimal estimator is given by the conditional expectation

µ̂ = E(µ|y)

Assuming that all shocks are normally distributed we can express the �lter formula as the linear

function

µ̂t =
∞∑

j=−∞
mjyt−j

where the weight mj is given by the coe�cient of Lj in the polynomial

M(L) =
(
σ2
η/|(1− L)n|2

)
/
(
σ2
η/|(1− Ln)|2 + σ2

ε/|Φ(L)|2
)

(7)

where we follow the convention to denote A(L)A(−L) as |A(L)|2. The formula is a simple ap-

plication of the general framework developed by Whittle (1983) and Bell (1984) and described

by Harvey (1989) and Kaiser/Maravall (2001). The numerator is the autocovariance generating

function of {µt}, the denominator the autocovariance generating function of {yt}.

The power transfer function of the low-pass �lter M(L) is obtained by replacing the lag opera-

tor L by e−iω in |M(L)|2 = M(L)M(−L). The gain function |M(ω)| =
√
|M(ω)|2 is then given

by

|M(ω)| = σ2
η[2(1− cosω)]−n/

{
σ2
η[2(1− cosω)]−n + g̃c(ω)σ2

c

}
(8)

where g̃c(ω) = gc(ω) · 2π/σ2
c (already de�ned after equation (5)).

Using the de�ntion λ∗ = σ2
c/σ

2
η we can write

|M(ω)| = 1/ [1 + λ∗[2(1− cosω)]ng̃c(ω)] (8a)
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Applying the same procedure to the cyclical component, we get

ĉt =
∞∑

j=−∞
(1−mj)yt−j =

∑
j

hjyt−j

The gain function of the high-pass �lter H(L) = 1−M(L) is given by

|H(ω)| = 1− |M(ω)|

Often the properties of a �lter are assessed by exploring its gain function. But, as Kaiser/Maravall

(2001) notes, �this function only tells part of the story�. It is much more useful to consider the

spectrum of a generated component. The spectrum is derived as the product of the squared gain

(the power transfer function) and the spectrum of the observed time series (see, e.g., Harvey, 1993).

We can derive the spectra of µ̂ and ĉ as

gµ̂(ω) = |M(ω)|2gy(ω) (9)

and

gĉ(ω) = |H(ω)|2gy(ω) (10)

The spectrum of (1− L)dµ̂t is given by

g∆dµ̂ = [2(1− cosω)]d gµ̂(ω) (11)

where d is a positive integer.

2.3 The HP �lter

We use the HP �lter for extracting the trend and cycle from a time series. Suppose a doubly

in�nite series, the cycle is estimated by the high-pass �lter (King/Rebelo 1993)

c̃t = H̃(L)yt

where

H̃(L) =
λ(1− L)2(1− L−1)2

1 + λ(1− L)2(1− L−1)2
=

λL−2(1− L)4

1 + λL−2(1− L)4

λ denotes not longer the true inverse signal-to-noise ratio, but is a prespeci�ed smoothing param-

eter. If we replace L by e−iω we get the frequency response function H̃(ω).
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The spectrum of c̃t is then given by

gc̃(ω) = |H̃(ω)|2gy(ω) (12)

where the transfer function |H̃(ω)|2 is given by |H̃(ω)|2 = H̃(ω) H̃(−ω) and gy(ω) is the pseudo-

spectrum of {yt}.

|H̃(ω)|2 can be expressed as

|H̃(ω)|2 =

(
4λ(1− cosω)2

1 + 4λ(1− cosω)2

)2

.

The trend is estimated by the low-pass �lter

µ̃t = M̃(L)yt =
(
1− H̃(L)

)
yt =

(
1 + λ(1− L)2(1− L−1)2

)−1
yt (13)

The pseudo spectrum of µ̃t is given by

gµ̃(ω) = |M̃(ω)|2gy(ω) (14)

|M̃(ω)|2 can be expressed as

|M̃(ω)|2 =
(
1 + 4λ(1− cosω)2

)−2
(15)

We can also derive the spectrum of (1− L)dµ̃t (where d is a positive integer) as

g∆dµ̃(ω) = [2(1− cosω)]d gµ̃(ω)

As already mentioned the choice of 1600 for the smoothing parameter λ seems to be the �industry

standard�. The HP �lter is the optimal �lter if the trend follows an integrated random walk, the

cycle is white noise (and not correlated with the trend shocks) and λ is set to the inverse signal-

to-noise ratio σ
2

c/σ
2

n(Kaiser/Maravall 2001). Even if the value of 1600 for λ is optimal for US GDP

it may be not optimal for GDP data of other countries or for other time series like investment

(Harvey/Trimbur 2008). The possibly more important and interesting question is whether it is

optimal to set λ equal to the inverse signal-to-noise ratio in cases when the cycle is not white noise.

We will deal with this problem in the next section.
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3 The optimal value for the HP smoothing parameter

3.1 The general procedure

In this section we derive the optimal value for the HP smoothing parameter λ in cases where

the cyclical component is not white noise but rather follows a stationary autocorrelated process.

We tackle this task in the following way: Firstly, we specify an AR process for the cycle {ct},
derive the spectrum gc(ω) and use equation (8a) for calculating the gain function |M(ω)| for the
optimal Wiener-Kolmogorov �lter. Secondly, from |M(ω)| we determine numerically the frequency

ω0, where the gain has the value 0.5: |M(ω0)| = 0.5. Third, we use the relation (Gomez 2001)

λHP = [2 sin(ω0/2)]−4 for calculating that value of λ for which the gain of the HP �lter has a value

of 0.5 at frequency ω0: At frequency ω0, the gain functions of the optimal Wiener-Kolmogorov and

of the HP �lter intersect. As Harvey/Trimbur (2008) note, this criterion is an approximation to

minimizing the distance between the two gain functions.

3.2 Numerical calculations

In the following we use di�erent speci�cations of the trend and cycle components for calculating

the �optimal� λoptHP with the outlined procedure. For the trend component, we use alternatively

a random walk (RW(1)) and an integrated random walk (RW(2)). For the cycle component we

specify AR(1) and AR(2) models.

3.2.1 Trend RW(2) and cycle AR(1)

The model is given by

(1− L)2µt = ηt

ct = ϕ1ct−1 + εt

ηt and εt are white noise. The calculations are carried out for di�erent values of the inverse signal-

to-noise ratio. Table 1 shows the �optimal� values for the HP smoothing parameter.

Except cases with rather high values of the autoregressive parameter ϕ1, the ratio λ
opt
HP/(σ

2
c/σ

2
η)

does not depend much on the true inverse signal-to-noise ratio (σ2
c/σ

2
η). However, the optimal λoptHP

increases strongly with the autoregressive parameter ϕ1. For ϕ1 = 0.5, a relatively modest degree

of autocorrelation, the optimal λoptHP is about three times higher than the inverse signal-to-noise

ratio. For λ = 0.9, λoptHP is about ten times higher than (σ2
c/σ

2
η). This implies that the standard

value of λHP = 1600 is much too low, even in cases where the assumption of Hodrick/Prescott

(σ2
c/σ

2
η = 1600) is valid.

Figure 1 shows the �lter weights of the optimal Wiener-Kolmogorov (WK) �lter (continuous line)
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Table 1: Optimal λoptHP for di�erent values of ϕ1 and σ2
c/σ

2
η (Trend: RW(2), Cycle: AR(1))

ϕ1 σ2
c/σ

2
η 800 1600 6400

0.0 800(1.0) 1600(1.0) 6400(1.0)
0.1 975(1.2) 1950(1.2) 7811(1.2)
0.3 1462(1.8) 2938(1.8) 11821(1.8)
0.5 2304(2.9) 4664(2.9) 18926(3.0)
0.7 4039(5.0) 8359(5.2) 34820(5.4)
0.9 7439(9.3) 18248(11.4) 94043(14.7)

Note: The numbers in parentheses denote the ratio λoptHP/(σ
2
c/σ

2
η)

for the AR(1) model with ϕ1 = 0.7 and the true inverse signal-to-noise ratio (σ2
c/σ

2
η) = 1600

(equation (7)), of the HP(1600) �lter (dashed line) and of the HP(8356) �lter (dotted line) (equa-

tion (13)). The HP(8356) �lter is the �optimal� HP �lter (in the sense explained above) for the

model. The weights for the WK and the HP(8356) �lter are almost identical. Only for the central

observation and the �rst lag and lead the weights for the HP(8356) �lter are slightly lower than

the weights for the WK �lter. The weights for the standard HP(1600) �lter, however, are far away

from the optimal weights.

The pattern of �lter weights carries over to the gain function of the �lters (equations (8a), (15)).

Figure 2 shows the gain for the three low-pass �lters. The gains of the WK and the HP(8356)

�lter, respectively, are contiguous, whereas the gain of the HP(1600) �lter is moved to the right

(to higher frequencies). Especially for frequencies between 0.1 and 0.3 (this corresponds to periods

of about 60 und 20 quarters) the gain of the HP(1600) �lter is much higher than the gain of the

optimal �lter. Consequently, the trend extracting HP(1600) �lter is too responsive to �uctuations

which are commonly counted as business cycles. Similar results are obtained when we use di�erent

values for the autoregressive parameter and the true inverse signal-to-noise ratio. In all cases the

message remains the same: The best approximation of the optimal Wiener-Kolmogorov �lter is

achieved by choosing a λ higher than σ2
c/σ

2
η.

8



Figure 1: Filter weights for WK, HP(1600) and HP(8356) �lters (RW(2); AR(1); ϕ1 = 0.7)

Figure 2: Gain functions of WK, HP(1600) and HP(8356) �lters (RW(2), AR(1), ϕ1 = 0.7)
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Figure 3: Spectra for the generated cycles (upper part) and for the second di�erences of generated
trends (lower part) (RW(2); AR(1), ϕ1 = 0.7)

In Figure 3 we evaluate the implied spectra of the generated cycle ĉ and of the second di�erences

the generated trend µ̂ (equations (10), (11), (12) and (16)). The upper part shows the spectra of

the generated cycles (together with the spectrum of the true cycle). The spectrum of the cycle

generated with the HP(1600) �lter is again markedly di�erent from that of the cycles generated

with optimal �lters. As the variance of a stationary time series is proportional to the integral over

the spectrum, it is clear that the variance of the cycle generated by HP(1600) is much lower than

the variance of the cycles generated by the WK and the HP(8536) �lters. In addition, the peak

of the spectrum of the cycle generated by HP(1600) is at a higher frequency. Consequently, the

HP(1600) produces shorter and smaller cycles than the optimal �lters.

An analagous pattern applies for the spectra of the second di�erences of the generated trends.

Most important is that the HP(1600) �lter produces a spectrum of (1− L)2µ̂t with a pronounced

peak in the region of business cycle frequencies: A value for λ �too low� produces cycles in the

second di�erences of the estimated trend. We will argue below that this feature can be used in

practical applications for determining a reasonable value for the smoothing parameter.

3.2.2 Trend RW(2) and cycle AR(2)

The model is given by

(1− L)2µt = ηt

ct = ϕ1ct−1 + ϕ2ct−2 + εt

10



Table 2: Optimal λoptHP for di�erent values of ϕ1, ϕ2 and σ2
c/σ

2
η (Trend: RW(2), Cycle: AR(1))

ϕ1, ϕ2||σ
2
c/σ

2
η 800 1600 6400

1.109, -0.36 3627(4.5) 7297(4.6) 29385(4.6)
1.663, -0.81 2476(3.1) 4657(2.9) 17233(2.7)
1.177, -0.36 4871(6.1) 9944(6.2) 40753(6.4)
1.765, -0.81 8379(10.5) 15887(9.9) 58905(9.2)

There are many combinations of ϕ1 and ϕ2 compatible with the stationarity assumption. In the

following we restrict the analysis to four combinations with complex roots in the AR polynomial:

1.) ϕ1 = 1.109, ϕ2 = −0.36; 2.) ϕ1 = 1.663, ϕ2 = −0.81; 3.) ϕ1 = 1.177, ϕ2 = −0.36; 4.)

ϕ1 = 1.765, ϕ2 = −0.81. The parameters are chosen accordingly to the AR part of structural time

series models (Harvey 1993, chapt. 6.5). We set ϕ1 = 2ρ cosωc and ϕ2 = −ρ2, where |ρ| < 1 is

a damping factor and ωc is the frequency of a cyclical function. The roots of the AR polynomial

are a pair of complex conjugates with modulus 1/ρ. Model 1 has a damping factor ρ of 0.6 and

a frequency ωc of 0.393 (16 quarters), model 2 a damping factor of 0.9 and a frequency of 0.393,

model 3 a damping factor of 0.6 and a frequency of 0.196 (32 quarters) and model 4 a damping

factor of 0.9 and a frequency of 0.196. We have two models with a short and two models with a

long cycle, combined with two di�erent damping factors, 0.6 and 0.9, respectively.

Table 2 shows the optimal values for the HP smoothing parameter for the di�erent models and

three di�erent values of the true inverse signal-to-noise ratio (800, 1600 and 6400). In all cases

the optimal value for λ is much higher than σ2
c/σ

2
η. For parameter combination 1.) is is about 4.5

times higher, for combination 2.) about 3 times higher, for combination 3.) about 6 times higher

and for combination 4.) about 10 times higher. For instance, if we assume a pronounced cycle

with a period of 8 years and a true inverse signal-to-noise ratio of 1600, the optimal value for the

HP smoothing parameter is 15887!

Figure 4 shows the �lter weights of the optimal Wiener-Kolmogorov (WK) �lter (continuous

line), for the AR(2) model with ϕ1 = 1.765, ϕ2 = −0.81 and σ2
c/σ

2
η = 1600, of the standard

HP(1600) �lter (dashed line) and of the HP(15887) �lter (dotted line). Contrary to the AR(1)

case, the weighting pattern of the WK �lter can not be fully replicated by a HP �lter with a

suitably chosen λ. The reason is that the weight function of the HP �lter is always relatively

smooth, whereas the weight function of the WK �lter has in the model under consideration a

sharp discontinuity for the central observation. However the di�erence between the weights of the

WK and of the HP(15887) �lter is very small for lags and leads higher than 4. In contrast, the

shape of the weights of the HP(1600) �lter is very di�erent (the near coincidence with the weight

of the WK �lter for the central observation is accidental).
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Figure 4: Filter weights for the WK, HP(1600) and HP(15887) �lters. (RW(2), AR(2), ϕ1 = 1.765,
ϕ2 = −0.81)

Figure 5 shows the gain for the three low-pass �lters. For frequencies lower than about 0.25

(a period of about 6 years) the gain function of the WK and the HP(15887) �lters are almost

identical. For higher frequencies, the gain of the HP(15887) �lter converges to zero, whereas the

gain of the WK �lter has small positive values. Similarily to the AR(1) model, the gain function

of the traditional HP(1600) �lter is very di�erent from the gain of the WK �lter.

Figure 5: Gain functions of WK, HP(1600) and HP(15887) �lters (RW(2); AR(2), ϕ1 = 1.765,
ϕ2 = −0.81)
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Figure 6: Spectra for the generated cycles (upper part) and for the second di�erences of generated
trends (lower part). (RW(2); AR(2), ϕ1 = 1.765, ϕ2 = −0.81)

Figure 6 shows the spectra of the generated cycles (upper part) and of the second di�erences

of the generated trend (lower part). Again, the spectra are very similar for the components

generated by the WK and the HP(15887) �lters, whereas the spectra generated by using the

traditional HP(1600) �lter are very di�erent. The cycle is clearly underestimated by HP(1600)

and the spectrum of the second di�erences of the estimated trend shows a very pronounced peak

in the region of business cycle frequencies.

3.2.3 Trend RW(1) and cycle AR(1)

In this section we repeat the calculations for the case where the �rst di�erences of the trend are

white noise (the trend is a random walk). Now, the inverse signal-to-noise ratio is much lower than

in the case where the second di�erences of the trend are white noise. For instance, the unobserved

components model for US GDP estimated by Watson (1985) implies a ratio σ2
c/σ

2
η of about 30.

We calculated the optimal values for the HP �lter for di�erent models of the stationary process

and three di�erent values of the true inverse signal-to-noise ratios (10, 30 and 60).

Table 3 presents the optimal value for the HP smoothing parameter for di�erent values of the

AR(1) parameter and the true data-generating value of the inverse signal-to-noise ratio. In case

of a RW(1)-trend the optimal values depend both an ϕ1 and σ
2
c/σ

2
η. In all combinations (even for

ϕ1 = 0, i.e., the cycle is white noise) the optimal λ is much higher than the true inverse signal-to-

noise ratio.

Figure 7 shows the weights for the WK, the HP(1600) and the HP(26313) �lter. The last �l-
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Table 3: Optimal λHP for di�erent values of ϕ1 and σ2
c/σ

2
η (Trend: RW(1), Cycle: AR(1))

ϕ1||σ2
c/σ

2
η 10 30 60

0.0 100(10.0) 900(30.0) 3600(60.0)
0.1 146(14.6) 1335(44.5) 5360(89.4)
0.3 322(32.2) 3036(101.2) 12282(204.7)
0.5 784(78.4) 7744(258.1) 31692(528.2)
0.7 2390(239.0) 26316(877.2) 110411(1840.2)
0.9 10002(1000.2) 230451(7681.7) 1103807(18396.8)

Note: The number in parentheses denote the ratio λHP/(σ
2
c/σ

2
η).

ter is the �optimal� HP �lter for ϕ1 = 0.7 and σ2
c/σ

2
η = 30. The weights for both HP �lters do

not follow closely the pattern for the WK �lter. This is not really surprising as it is well known

that the WK �lter for a random walk trend is the exponential smoothing �lter (King/Rebelo 1993;

Proietti 2007; Harvey/Delle Monache 2009).

Figure 7: Filter weights for WK, HP(1600) and HP(26316) (RW(1), AR(1), ϕ1 = 0.7)

The very poor performance of the HP �lter is con�rmed in Figure 8 where the gain functions

are shown. In the region of business cycle frequencies (say, about 0.2) the gains of the HP �lter

are far away from the gain of the WK �lter: The HP(1600) �lter transfers too much from business

cycle �uctuations to the trend, the HP(26316) too little.
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Figure 8: Gain functions of WK, HP(1600) and HP(26316) �lters (RW(1); AR(1), ϕ1 = 0.7)

Figure 9: Spectra for the generated cycles (upper part) and for the second di�erences of generated
trends (lower part). (RW(1); AR(1), ϕ1 = 0.7)

The distortionary e�ects can also be seen in the spectra for the cycle and the �rst di�erences

of the trend (Figure 9). The HP(1600) �lter underestimates the cycle and leads to a cyclical

movement in the �rst di�erences, the HP(26316) �lter overestimates the cycle. The conclusion

from these exercises is that the HP �lter does not work satisfactorily when the trend follows a

random walk. In this case exponential smoothing may be a much better choice.
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3.3 A simulation study

The results in the previous sections are derived under the assumption of a double in�nite time

series. In �nite time series we have at the start and the end of the sample asymmetric �lters. In

order to check the ability of the HP �lter with a relatively high smoothing parameter to replicate

the main properties of the WK �lter for autocorrelated cycle processes we carry out a simulation

study for a �nite time series with 160 observations.

The model is given by

yt = µt + ct

(1− L)2µt = ηt

ct = ϕ1ct−1 + ϕ2ct−2 + εt

ηt and εt are mutually uncorrelated white noise processes. The inverse signal-to-noise ratio σ2
c/σ

2
η

is set to the three alternative values 800, 1600 and 6400.

We generate series for {µt}, {ct} and {yt}, t = 1, ..., 160 and �lter the �observed� time series

{yt} with the optimal WK �lter and the HP �lter, using for the latter di�erent values of the

smoothing parameter λ.

The estimated trend values µ̂ are generated by using the matrix formula (McElroy 2008; Flaig

2012):

µ̂ = (C−1
c + λD′D)−1C−1

c y

Cc is the T × T correlation matrix of {ct}, λ is the true inverse signal-to-noise ratio σ2
c/σ

2
η and D

is the (T − 2)× (T − 2) di�erencing matrix, given by

D =


1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0
...

...
...

...

0 0 0 0 · · · 1 −2 1


For estimating µ with the HP �lter we set Cc = I and λ to a prespeci�ed value.

The simulation study consists of 1000 replications of the described procedure. For each repli-

cation we calculated the mean absolute error MAE = (
∑
t |µt − µ̂t|) /T and the mean squared

error MSE = (
∑
t(µt − µ̂t)2) /T for the di�erent �lters.
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Table 4: Relative e�ciency of di�erent HP �lters compared to WK �lter (Trend: RW(2), Cycle:
AR(1)

ϕ1||σ2
c/σ

2
η 800 1600 6400

HP(800) HP(opt) HP(1600) HP(opt) HP(6400) HP(opt)
0.0 1.000 1.000(1) 1.000 1.000(1) 1.000 1.000(1)
0.1 0.996 0.996(1) 0.994 0.994(1) 0.996 0.996(1)
0.3 0.964 0.996(2) 0.970 0.995(2) 0.972 0.992(2)
0.5 0.912 0.990(3) 0.914 0.992(3) 0.912 0.992(3)
0.7 0.829 0.984(5) 0.828 0.984(5) 0.814 0.984(5)
0.9 0.796 0.964(10) 0.740 0.953(12) 0.682 0.943(14)

Note: The numbers in parentheses denote the ratio of the �optimal� HP smoothing parameter to
the true inverse signal-to-noise ratio.

Following Harvey/Delle Monache (2009) we assess the e�ciency of a �lter by the ratioMSEWK/MSEHP ,

where MSEWK and MSEHP are the mean squared error of the Wiener-Kolmogorov �lter and the

HP �lter, respectively. Table 4 shows the relative e�ciency of di�erent HP �lters compared to

the WK �lter for di�erent values of ϕ1 for an AR(1) model of the cycle and for di�erent values of

the true inverse signal-to-noise ratio σ2
c/σ

2
η. The e�ciency in the columns labeled as HP(opt) are

obtained in the following way:

For each model (characterized by ϕ1 and σ2
c/σ

2
η) we generate 1000 series of 160 observations for

trend µ, cycle c and the �observed� time series y (trend + cycle). For each time series we calculate

the mean square error MSE = (
∑
t(µt − µ̂t)2) /T for the WK �lter and for 15 HP �lters with

smoothing parameter λj = jσ2
c/σ

2
η, j = 1, 2, ..., 15. An entry in Table 4 shows the mean of 1000

values forMSEWK/MSEHP . For each true inverse signal-to-noise ratio (800, 1600 and 6400) there

are two columns of results. The �rst column shows the relative e�ciency of the HP(σ2
c/σ

2
η) �lter,

the second the relative e�ciency when we choose the �optimal� λ. The numbers in parentheses

denote the ratio of the �optimal� smoothing parameter to σ2
c/σ

2
η.

The results indicate that in case the cycle follows an AR(1) process one can get an impressive

e�ciency gain by choosing an HP smoothing parameter higher than the true inverse signal-to-

noise ratio. Take, for example, a model with σ2
c/σ

2
η = 1600 and ϕ1 = 0.7. Compared with the

WK �lter, the HP(1600) �lter has a relative e�ciency of 0.83, whereas the HP(8000) �lter has a

relative e�ciency of 0.98.

Table 5 reports the results for four AR(2) processes. The results con�rm the conclusions for the

AR(1) case. By choosing a reasonably high value of the HP smoothing parameter one can achieve a
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Table 5: Relative e�ciency of di�erent HP �lters compared to WK �lter (Trend: RW(2), Cycle:
AR(2))

ϕ1, ϕ2 ||σ2
c/σ

2
η 800 1600 6400

HP(800) HP(opt) HP(1600) HP(opt) HP(6400) HP(opt)
1.109, -0.36 0.835 0.980(5) 0.837 0.980(5) 0.819 0.974(5)
1.663, -0.81 0.810 0.935(3) 0.828 0.949(3) 0.841 0.943(3)
1.177, -0.36 0.794 0.972(6) 0.779 0.968(6) 0.778 0.962(6)
1.765, -0.81 0.629 0.927(11) 0.626 0.912(10) 0.640 0.919(10)

Note: The numbers in parentheses denote the ratio of the �optimal� HP smoothing parameter to
the true inverse signal-to-noise ratio.

remarkable e�ciency gain compared with the HP �lter where λ is set to the true inverse signal-to-

noise ratio. Compared with the AR(1) model for the cycle the maximal e�ciency is now somewhat

lower. For instance, for case 4 (ϕ1 = 1.765, ϕ2 = −0.81) and a true inverse signal-to-noise ratio

of 1600, the relative e�ciency (compared to the WK �lter) is 91 %. However, the HP(1600) �lter

has only a relative e�ciency of 63 %. The reward of using a high smoothing parameter is still high.

The results generated by the simulation study using a �nite length of the time series con�rm

the conclusions of the theoretical analysis for doubly in�nite series: When the stationary com-

ponent of a time series is autocorrelated, the optional value for the HP smoothing parameter is

several times higher than the inverse signal-to-noise ratio.

4 Choosing λ in practical applications: A new proposal

It is common knowledge that the HP �lter may induce spurious cycles. An often used example is

the case of a random walk as the input series (Kaiser/Maravall 2001). In this case, the HP �lter

typically produces cycles with periods between 8 and 10 years (λ = 1600). The main argument

here concentrates on the contrary danger. The basic assumption is that the cyclical component

is not white noise but follows an autocorrelated process. In this case it is necessary to choose a

value for the smoothing parameter λ that is much higher than the true or assumed inverse signal-

to-noise ratio. The problem for the practitioner is that we do not know the parameters of the

data-generating process (at least in situations where it is too di�cult or too costly to estimate the

parameter of structural models).

In this section we propose the following (partial) solution to this problem. We start with the

assumption that the generated trend component should not exhibit any cyclical features. Since

the trend is not stationary, we concentrate on the �rst and/or second di�erences of the trend.

We identify a possible cycle in the di�erences of the generated trend using the spectrum of
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(1− L)dµ̃t, d = 1, 2, where µ̃t is the HP-generated trend component.

Using the results in section 2.3, we can write the spectrum g∆dµ̃ of (1− L)dµ̃t as

g∆dµ̃ = [2(1− cosω)]d |M̃(ω)|2gy(ω)

= (σ2
n/2π)

[
1 + 4λ(1− cosω)2

]−2 {
[2(1− cosω)]d−n + [2(1− cosω)]d λ∗g̃c(ω)

}
where λ is the HP smoothing parameter and λ∗ is the true inverse signal-to-noise ratio. If d < n,

(1− L)dµ̃t is not stationary.

Given the parameters of the true data-generating process, the shape of g∆dµ̃ is determined by

the smoothing parameter λ. In the following we concentrate on the case d = n. If λ = 0, g∆dµ̃

is an increasing function of ω, if λ is very high, g∆dµ̃ is a decreasing function of ω. For values in

between, it is possible that g∆dµ̃ has a peak for 0 < ω < π. If this occurs, we have cycles in the

di�erences of the generated trend.

Figure 10 shows the spectra of g∆2µ̃ for a model where the trend is an integrated random walk

(n = 2) and the cycle follows an AR(1) process with ϕ1 = 0.7. The thick continuous line shows the

spectrum for the HP(1600) �lter. It has a pronounced peak at frequency 0.133 (which corresponds

to a period of 47 quarters). The dashed line shows the spectrum for the HP(3200) �lter. We have

a peak at frequency 0.091, which is less pronounced than the peak for the HP(1600).

The spectrum of the HP(4800) �lter (dotted line) has no peak, but is nevertheless shifted to

the right compared to the WK �lter (thin continuous line). The trend generated by the HP(4800)

is still to responsive to �uctuations with business cycle frequencies. We know that the �optimal�

value for λ in this case is 8359 (see section 3.2.1). We conclude that the lowest value for λ that

does not generate a peak in the spectrum of the second di�erences of the extracted trend is about

half as high as the �optimal� value. This is roughly con�rmed by calculations for other models of

the cycle.
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Figure 10: Spectra of second di�erences of generated trends for di�erent values of λ (RW(2),
AR(1), ϕ1 = 0.7)

5 An empirical example: US Private Investment

In this section we study the e�ects of di�erent values of the HP smoothing parameter on the prop-

erties of the estimated trend of US Real Gross Private Domestic Investment (logarithmic values;

1950:1 - 2011:4). We estimate the trend component with the HP �lter with values for λ of 1600,

8000, 16000 and 32000. Figure 11 shows in the upper part the growth rates for the generated

trends, in the lower parts changes in the growth rates (second di�erences). The thick continuous

line shows the results for the HP(1600) �lter. Both �rst and second di�erences display clearly cy-

cles with a period of about 8 years. Oscillations with this period are counted by many economists

as business cycles. If one accepts that business cycles can appear in the growth rates of the trend,

it is �ne. But the general de�nition of the trend does not allow for cyclical elements. In this

interpretation, the generated �trend� is a mixture of trend and cycle and, consequently, an artefact

of the �lter.

To a lesser degree, the �rst and second di�erences of trends generated by the HP(8000) (dashed

line) and HP(16000) (dotted line) show a similar picture. When we use HP(32000), the di�erences

display no cyclical element.
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Figure 11: First and second di�erences of HP generated trends (US Private Investment)

From the perspective of the criterion that the trend and its di�erences should not exhibit any

form of a cycle it is clear from the previous discussion that for real investment a smoothing pa-

rameter of 1600 is not appropriate. The minimum reasonable values for λ is in the region of 20000

to 40000. Harvey/Trimbur (2008) suggest a value of 32000 (based on a somewhat di�erent line

of arguments). Using the result of section 4 one can argue that the �optimal� value may be even

higher, say about 60000.

The choice of the smoothing parameter has far-reaching consequences for the size and the dy-

namic properties of the HP-generated cycle component. In the example of US Private Investment,

the standard deviation of the cycle is 0.077 for λ = 1600 and 0.094 for λ = 32000. And the

autocorrelation function decays at a much slower rate for higher λ- values. For instance, the auto-

correlation coe�cient at lag 1 (4) is 0.80 (0.03) for λ = 1600 and 0.87 (0.29) for λ = 32000. It is left

for future research to analyze the implication of di�erent smoothing parameters for other variables

(GDP, consumption, employment, etc.) and to explore the consequences for the construction of

�stylized facts� of the business cycle.

6 Summary and conclusions

When we interpret the Hodrick-Prescott �lter as a model-baed �lter it is well known that it is

the optimal Wiener-Kolmogorov �lter if the trend follows an integrated random walk, the cycle

is white noise and the smoothing parameter λ is set to the inverse signal-to-noise ratio. In the

traditional trend-cycle decomposition these assumptions are in many cases clearly implausible and
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the HP �lter lacks a sound theoretical foundation.

In this paper we concentrate on the situation where the cycle follows an AR(1) or AR(2) pro-

cess and ask the question whether it is possible to reach a reasonable approximation of the optimal

Wiener-Kolmogorov �lter by the HP �lter with an appropriate chosen value for the smoothing

parameter λ. The analysis is done in the following way: First, we calculate from the gain function

of the optimal Wiener-Kolmogorov �lter the frequency where the gain is 0.5. Secondly, we deter-

mine the value of λ for which the gain function of the HP �lter has also the value of 0.5 at the

same frequency. In the last step we compare the mean square error of both �lters (the WK �lter

and the HP �lter with the �optimized� value of λ). These calculations are carried out for di�erent

speci�cations of the AR-parameters of the cycle, di�erent values of the inverse signal-to-noise ratio

and di�erent speci�cations of the trend component.

The general result is that in case the trend follows an integrated random walk one gets a relatively

good approximation of the weights and the gain function of the optimal Wiener-Kolmogorov �lter

by choosing a value for the HP smoothing parameter much higher than the inverse signal-to-noise

ratio. For example, when the cycle follows an AR(1) process with a parameter ϕ1 = 0.9, the

�optimal� value of λ is more than 10 imes higher than the true inverse signal-to-noise ratio.

Smoothing parameters �too low� have a twofold distortionary e�ect. They produce trends with �rst

and/or second di�erences which exhibit cyclical features. The trend is too responsive to business

cycle �uctuations. This implies that the variance and the period of the generated cycle are too

low. The relevance of the cyclical component is underestimated.

When the trend is a random walk the approximation is not really satisfactory. It is not possi-

ble to replicate the shape of the weight and gain function of the optimal Wiener-Kolmogorov �lter

by the HP �lter. However, the general result remains that we should select higher values for λ

than usually chosen (e.g., λ = 1600).

These �ndings are useful, but not really applicable in practice as we do not know the true inverse

signal-to-noise ratio. The problem is how to choose an appropriate value for the HP smoothing

parameter. The suggestion proposed in this paper is to rely on the properties of the �rst and/or

second di�erences of the extracted trend. The proposal is based on the assumption that the

di�erences of the extracted trend should not show any cyclical behaviour (in the sense that the

spectrum of the di�erences has a peak in the region of business cycle frequencies). It is shown

that by choosing a high enough smoothing parameter a peak can always be avoided. In practical

applications we could estimate the trend by applying the HP �lter with di�erent values for λ and

search for the lowest among them which does not produce cycles in the di�erences of the generated
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trend.

In the last section the proposal procedure is applied to US private real investment. We �nd

that the lowest value for λ that does not produce cycles in the di�erences of the trend component

is about 32000. With some caution, we can conclude that the �optimal� value of the smoothing

parameter may be approximately 60000!

The general conclusion of this paper is that the �industry standard� of λ = 1600 may be much

too low for many macroeconomic time series. In order to produce reasonable and reliable trend-

cycle decomposition much higher values are necessary. It is left for future research to explore the

implications for the �stylized facts� of business cycles.
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